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Brownian motion, Bessel and symmetric Stable processes.
▶ Let Xt denote the Brownian motion on Rn.

▶ For α ∈ (0, 2), St denote the symmetric α-stable process.
That is, (St) has independent stationary increments with
characteristic function E[exp(iξ · St)] = exp(−t ∥ξ∥α).

▶ Let Yt denote the (2− α)-dimensional Bessel process on
[0,∞) generated by d

dy2 +
1−α
y

d
dy independent of Xt .

▶ Let Lt denote the local time at zero of the process Yt and let
τt denote the right continuous inverse of Lt defined as

τt = inf{s > 0 : Ls > t}.

▶ Theorem (Molchanov, Ostrovskii ‘69, Caffarelli, Silvestre ‘07)

(Xτt ,Yτt )
(law)
= (St , 0).

▶ The case α = 1 was shown earlier by Spitzer ‘58.
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Analytic significance due to Caffarelli-Silvestre

▶ The process Zt = (Xt ,Yt) is a degenerate diffusion on the
upper half space Hn+1 = Rn × [0,∞) with generator

Lα = ∆x + ∂yy +
1− α

y
∂y .

▶ Key observation due to Caffarelli and Silvestre: properties of
the non-local fractional Laplace operator −(−∆)α/2 in Rn can
be deduced from corresponding properties of the local
operator Lα on Hn+1.
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Caffarelli-Silvestre version

▶ The diffusion Zt = (Xt ,Yt) on Hn+1 corresponds to the
Dirichlet form L2(Hn+1, y1−α dy dx) given by

E(u, u) =
�
Rn

�
(0,∞)

|∇u(x , y)|2 y1−αdy dx .

▶ The Dirichlet form corresponding to the boundary trace
process of the diffusion Zt on ∂Hn+1 ≡ Rn is given by

Ě(f , f ) =
�
Rn

�
(0,∞)

|∇u(x , y)|2 y1−αdy dx

where u solves the Dirichlet problem (harmonic for E)

Lαu ≡ 0, on Rn × (0,∞), with boundary value u(x , 0) = f (x).

4 / 25



Caffarelli-Silvestre version

▶ Caffarelli-Silvestre show that�
Rn

�
(0,∞)

|∇u(x , y)|2 y1−αdy dx =

�
Rn

[(−∆)α/2f ](x)f (x) dx

= cn,α

�
Rn

�
Rn

(f (x)− f (y))2

|x − y |n+α dy dx ,

where u solves the Dirichlet problem (harmonic function with
prescribed boundary value)

Lαu ≡ 0, on Rn × (0,∞), with boundary value u(x , 0) = f (x),

F
[
(−∆)α/2f

]
(ξ) = |ξ|αF(f ) denotes the fractional

Laplacian, and F [·] denotes the Fourier transform.

▶ This is the Dirichlet form of the symmetric α-stable process.
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Questions addressed in this work

▶ Does the boundary trace process behave like a symmetric
stable process for other domains and diffusions?

▶ For example, what if we replace the reflected Brownian motion
with a diffusion generated by uniformly elliptic operator?

▶ What if we consider reflected Brownian motion on
non-smooth domains like Lipschitz domains (first orthant) or
uniform domain (snowflake domain)?

▶ What if we consider the trace of the Brownian motion on the
Sierpiński carpet on its outer square boundary?
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Trace of reflected Brownian motion on smooth domains

▶ (Osborn ‘60, Douglas ‘31) If U is a smooth domain in Rn with
Green function gU(·, ·) and u is harmonic in U with prescribed
boundary value f : ∂U → R, then the Dirichlet energy of u
can be expressed in terms of f as

�
U
|∇u|2 (x) dx =

1

2

�
∂U

�
∂U

(f (ξ)−f (η))2
∂2gU(ξ, η)

∂n⃗ξ∂n⃗η
dσ(ξ) dσ(η),

where σ is the surface measure on ∂U and n⃗ξ, n⃗η are inward
pointing unit normal vectors at ξ, η ∈ ∂U.

▶ The proof involves integration by parts (Gauss-Green formula).

▶ How to handle non-smooth domains like the snowflake
domain?

▶ Doob ‘62 proved a remarkable formula for the Dirichlet energy
for domains that are not necessarily smooth. We call it the
Doob-Näım formula.
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Näım kernel

▶ Let U denote a transient domain and let ∂MU denote its
Martin boundary. Let x0 ∈ U be a base point.

▶ The Näım kernel is defined as

ΘU
x0(x , y) =

gU(x , y)

gU(x0, x)gU(x0, y)
, for x , y ∈ U \ {x0}.

▶ Näım ‘57 showed that the above function can be extended
continuously to the Martin boundary ∂MU with respect to
Cartan’s fine topology on U ∪ ∂MU as

ΘU
x0(ξ, η) = lim

x→ξ
lim
y→η

gU(x , y)

gU(x0, x)gU(x0, y)
, for ξ, η ∈ ∂MU, ξ ̸= η,

The above limits are with respect to Cartan’s fine topology.
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Doob-Näım formula

Theorem (Doob ‘62)

Let ωU
x0(·) denote the harmonic measure for the Brownian motion

on the Martin boundary ∂MU, where x0 ∈ U is the starting point.
The Dirichlet energy of a harmonic function on u : U → R with a
prescribed boundary value f : ∂MU → R is given by

�
U
|∇u|2 dx =

�
∂MU

�
∂MU

(f (ξ)− f (η))2ΘU
x0(ξ, η) dω

U
x0(ξ) dω

U
x0(η).

In other words, the jump kernel of the boundary trace of reflected
Brownian motion with respect to the harmonic measure is the
Näım kernel.

Doob’s proof relies on a version of integration by parts that uses
the notion of fine normal derivatives introduced by Näım ‘57.
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Uniform domains and capacity density condition
▶ A domain U is said to satisfy the capacity density condition if

there exists C1,A1 such that for all
ξ ∈ ∂U, 0 < r diam(U)/A1,

Cap(B(ξ, r),B(ξ, 2r)c) ≤ C1Cap(B(ξ, r) \ U,B(ξ, 2r)c)

▶ (Martio, Sarvas ‘79) A connected, non-empty, proper open set
U ⊊ X is said to be a uniform domain if there exists A > 1
such that for every pair of points x , y ∈ U, there exists a
curve γ in U from x to y such that its diameter
diam(γ) ≤ Ad(x , y), and

dist (z ,Uc) ≥ A−1min (d(x , z), d(y , z)) for all z ∈ γ.
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Why study uniform domains?

▶ There is a one-to-one correspondence between a class of
uniform domains and Gromov-hyperbolic spaces (Bonk,
Heinonen, Koskela ‘01)

▶ (Rajala ‘21) Uniform domains are abundant in the sense that
every bounded domain can be approximated by a uniform
domain.

▶ Given a complete, doubling metric space (X , d) that is
bi-Lipschitz equivalent to a length space, a bounded domain Ω
and ϵ > 0, there exist uniform domains Ωo and Ωi such that

Ωi ⊂ Ω ⊂ Ω0, Ωo ⊂ [Ω]ϵ, (Ωi )
c ⊂ [Ωc ]ϵ.

▶ Uniform domains can have fractal boundaries and are far from
smooth in general.
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Our version of Doob-Näım formula

Theorem 1 (Kajino, M. ‘24+): Let (X , d ,m) be a metric measure
space and let (E ,F) denote a Dirichlet form on L2(m)
corresponding to a diffusion process on X that satisfies
sub-Gaussian heat kernel estimates. Let U be a uniform domain
satisfying the capacity density condition and x0 ∈ U. Then

(a) The Näım kernel has a continuous extension to the
topological boundary as a (jointly) continuous function on(
(U \ {x0})× (U \ {x0})

)
\ (U \ {x0})diag.

(b) The Dirichlet energy of a harmonic function in U (with respect
to (E ,F)) with prescribed boundary value f : ∂U → R is

�
∂U

�
∂U

(f (ξ)− f (η))2ΘU
x0(ξ, η) dω

U
x0(ξ) dω

U
x0(η),

where ωU
x0 is the harmonic measure on ∂U for the diffusion

starting at x0 and stopped upon exiting U.
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Remarks on the Doob-Näım formula

▶ Our proof relies on boundary Harnack principle which was not
available to Doob in 1962 as the first versions of BHP were
only developed in the late seventies.

▶ We use the boundary Harnack principle established by
A. Chen ‘24+. following the work of Aikawa ‘01.

▶ The degenerate diffusion of Molchanov and Ostrovskii satisfies
the condition of our theorem due to earlier results of Fabes,
Kenig, Serapioni ‘82 and results of Grigor’yan ‘91,
Saloff-Coste ‘92. Therefore the result of Caffarelli-Silvestre
follows from our version of the Doob-Näım formula.
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Further remarks on the Doob-Näım formula

▶ Doob’s approach only is available for the Brownian motion
but can handle more general domains.

▶ Näım’s formula for fine normal derivative is not available for
uniformly elliptic operators in Rn.

▶ The Doob-Näım formula is new for elliptic operators on Rn

given by Lf := div (A(·)∇f ), where A is a measurable
n × n-positive definite matrix valued whose eigenvalues are
uniformly bounded from above and below.

▶ There is a diffusion generated by uniformly elliptic operator on
two dimensional upper half-space with singular harmonic
measure (with respect to the surface measure) due to
Caffarelli, Fabes, Kenig ‘81 based on a quasi-conformal
mapping of Ahlfors-Beurling ‘56.
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Estimates on harmonic measure
Theorem 2 (Kajino, M. ‘24+) Under the assumptions of Theorem
1, there exist C ,A ∈ (0,∞) such that for any
x0 ∈ U, ξ ∈ ∂U, r < d(x0, ξ)/A

C−1 gU(x0, ξr )

gU(ξ′r , ξr )
≤ ωU

x0(B(ξ, r)) ≤ C
gU(x0, ξr )

gU(ξ′r , ξr )

where ξr , ξ
′
r ∈ U are chosen so that

dist (ξr ,U
c) ≍ dist (ξ′r ,U

c) ≍ d(ξr , ξ) ≍ d(ξ′r , ξ) ≍ d(ξr , ξ
′
r ) ≍ r .
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Boundary local time

For the Molchanov-Ostrowski diffusion Zt = (Xt ,Yt), the local
time Lt of Yt at zero serves as a ‘boundary local time’ with

Rn × {0} = ∂Hn+1 = {z ∈ Hn+1 : Pz [Lt > 0] = 1 for all t > 0}.

Lt is a positive continuous additive functional associated with the
Markov process Zt supported on ∂Hn+1.
A positive continuous additive functional (PCAF) associated
At : Ω → [0,∞), t ≥ 0 with a Markov process (Ω,Ft ,Zt , θt ,Pz)
where Ft is the associated filtration, θt : Ω → Ω is the time-shift
operator such that

(a) (positive and continuous) t 7→ At(ω) is non-negative,
continuous and A0(ω) = 0 Pz -almost surely for all z .

(b) (adapted) At(·) is Ft-measurable.

(c) (additive property) At+s(ω) = At(ω) + As(ω ◦ θt) Pz -almost
surely for all z .
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Boundary local time of a reflected diffusion

Let Xt be a diffusion on U symmetric with respect to the measure
m and let (At) be a positive continuous additive function.
Theorem (Revuz ‘70): There exists a unique measure µ on U such
that for all non-negative measurable function h, f : U → [0,∞), we
have

Eh·m

[� t

0
f (Xs) dAs

]
=

� t

0

�
U
f (y)Psh(y)µ(dy) ds,

where Psh(y) = Ey [h(Xs)] is the corresponding Markov semigroup.
Conversely, given any smooth measure µ on U there exists a
unique PCAF that satisfies the above property.
Examples: Let At be the local time at x ∈ R for Brownian motion
on R, then µ = δx .
If At =

� t
0 f (Xs) ds, where f ≥ 0, then µ = f ·m.
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Boundary measure on bounded domains

By the Revuz correspondence, the boundary local time can be
defined by choosing a suitable measure µ supported on the
boundary ∂U.
The harmonic measure ωU

x0 is a natural choice for µ.
For bounded domains, we choose µ = ωU

x0 , where x0 ∈ U is chosen
so that dist (x0,U

c) ≍ diam(U).
This choice defines the measure up to a bounded perturbation,
since if x0, x

′
0 ∈ U satisfy the above conditions

dωU
x ′0

dωU
x0

≍ 1 on ∂U.
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Boundary measure on unbounded domains

For unbounded domains, there is a ‘canonical’ variant of harmonic
measure due to Kenig and Toro ‘99 for non-tangentially accessible
domains in Rn.
For each x0 ∈ U, there exists a unique measure µU

x0 on ∂U such
that

µU
x0(·) = lim

y→∞

1

g(x0, y)
ωU
y (·)

For x0, x1 ∈ U, there exists cx0,x1 ∈ (0,∞) such that
µU
x1(·) = cx0,x1µ

U
x0(·).

We choose the boundary measure µ = µU
x0 for some x0 ∈ U in the

case of unbounded domains.
Theorem 2 implies that µ is doubling (for both bounded and
unbounded domains).
Example: For the Molchanov-Ostrovskii diffusion µ is (a positive
multiple of) the Lebesgue measure on ∂Hn+1 = Rn.
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The boundary trace process

Theorem 3 (Kajino, M. ‘24+): Let U be a domain as in Theorem
1 and let (Xt)t≥0 be reflected diffusion on U.
Let At denote the positive continuous additive functional
corresponding to the boundary measure µ. Then At has support
∂U; that is

∂U = {x ∈ U : Px [At > 0] = 1 for all t > 0}.

Then X̌t = Xτt , where τt is the right continuous inverse of At is a
µ-symmetric Markov process on ∂U whose Dirichlet form on
L2(∂U, µ) is given by the Doob-Näım formula.
The jump process X̌t on ∂U satisfies stable-like heat kernel bounds.
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Properties of α-stable process

Let us express properties of the α-stable process in terms of the
Lebesgue measure m, Euclidean distance d(·, ·) and the space-time
scaling function ϕ(r) = rα.
The jump kernel and exit time bounds are

J(x , y) ≍ 1

m(B(x , d(x , y)))ϕ(d(x , y))
, Ex [τB(x ,r)] ≍ ϕ(r),

and the heat kernel bound is

pt(x , y) ≍
1

m(B(x , ϕ−1(t)))
∧ t

m(B(x , d(x , y)))ϕ(d(x , y))
.

for all x , y ∈ Rn, t, r > 0.
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Space-time scaling of the boundary trace process

Φ(ξ, r) ≍

{
gU(ξr , x0), for all ξ ∈ ∂U, 0 < r < diam(U)/A < ∞,

hUx0(ξr ), for all ξ ∈ ∂U, r > 0, if diam(U) = ∞,

where ξr ∈ U satisfies d(ξr , ξ) ≍ dist (ξr ,U
c) ≍ r and hUx0(·) is the

unique positive harmonic function on U with zero boundary
condition with normalization hUx0(x0) = 1.
Examples:
For the Molchanov-Ostrovskii diffusion, the positive harmonic
function is h(x , y) = yα for x ∈ Rn, y ∈ [0,∞).
For the reflected Brownian motion on the first orthant
U = [0,∞)n, the harmonic function is

h(x) =
n∏

i=1

xi , h(ξr ) =
n∏

i=1

(ξi + r),

where x = (x1, . . . , xn) ∈ U, ξ = (ξ1, . . . , ξn) ∈ ∂U.
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Estimates for the boundary trace process

The jump kernel and exit time bounds are

J(ξ, η) ≍ 1

µ(B(ξ, d(ξ, η)))Φ(ξ, d(ξ, η))
, Eξ[τB(ξ,r)] ≍ Φ(ξ, r),

and the heat kernel bound is

pt(ξ, η) ≍
1

µ(B(ξ,Φ−1(ξ, t)))
∧ t

µ(B(ξ, d(ξ, η)))Φ(ξ, d(ξ, η))
.

for all x , y ∈ U, 0 < r < C−1 diam(U), where Φ−1(ξ, t) is the
inverse of r 7→ Φ(ξ, r) evaluated at t.
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Ingredients in the proof of Theorem 3

▶ The jump kernel estimates follow from the Doob-Näım
formula (Theorem 1) and estimates on harmonic measure
(Theorem 2).

▶ The reflected diffusion on U inherits sub-Gaussian heat kernel
estimates from the ambient space (M. ‘24).

▶ This implies green function bounds on the boundary trace
process which in turn implies exit time bounds for the
boundary trace process.

▶ General conditions on stable-like heat kernel bounds due to
Chen-Kumagai-Wang ‘21 and Grigor’yan-Hu-Hu ‘23 allows us
to deduce stable-like heat kernel bounds from jump kernel and
exit time estimates.

▶ Our approach uses heat kernel estimates for the reflected
diffusion to obtain heat kernel estimates for the corresponding
boundary trace process (similar to Caffarelli-Silvestre).
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