Heat kernel estimates for boundary trace of
reflected diffusions

Mathav Murugan

The University of British Columbia

Stochastics and Geometry, BIRS, September 2024.

Joint work with Naotaka Kajino (Kyoto University).

1/25



Brownian motion, Bessel and symmetric Stable processes.

>
>

Let X; denote the Brownian motion on R”.

For ao € (0,2), S; denote the symmetric a-stable process.
That is, (S¢) has independent stationary increments with
characteristic function E[exp(i¢ - S¢)] = exp(—t [|€]|).
Let Y: denote the (2 — a)-dimensional Bessel process on
[0, 00) generated by ﬁ + 1770“% independent of X:.

Let L; denote the local time at zero of the process Y; and let
7+ denote the right continuous inverse of L; defined as

Tt =inf{s > 0: Ls > t}.

Theorem (Molchanov, Ostrovskii ‘69, Caffarelli, Silvestre ‘07)

law
(Xoe, Vo) 2 (52, 0).

The case a = 1 was shown earlier by Spitzer ‘58.
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Analytic significance due to Caffarelli-Silvestre

» The process Z; = (Xt, Yt) is a degenerate diffusion on the
upper half space H"™! = R" x [0, c0) with generator

1i
La :Ax+6yy+ 7)/0[8),.

» Key observation due to Caffarelli and Silvestre: properties of
the non-local fractional Laplace operator —(—A)%/2 in R" can
be deduced from corresponding properties of the local
operator L, on H™1!.
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Caffarelli-Silvestre version

» The diffusion Z; = (X;, Y;) on H"*! corresponds to the
Dirichlet form L2(H"!, y1=< dy dx) given by

sw)= [ [ Valxp)Pyt oy o
nJ(0,00)

» The Dirichlet form corresponding to the boundary trace
process of the diffusion Z; on OH"! = R” is given by

E(F.f) = / / Vulx, y) y'dy dx
nJ(0,00)

where u solves the Dirichlet problem (harmonic for &)

Lou=0, onR"”x(0,00), with boundary value u(x,0) = f(x).
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Caffarelli-Silvestre version

» Caffarelli-Silvestre show that

/H/Om)\wxy vty dx= [ [(-8)720)F(x) d

= Cna/ / n+a) dy an

where u solves the Dirichlet problem (harmonic function with
prescribed boundary value)

Lou=0, onR"”x(0,00), with boundary value u(x,0) = f(x),

F [(—2)>/2f] (€) = [£|* F(f) denotes the fractional
Laplacian, and F[:] denotes the Fourier transform.

» This is the Dirichlet form of the symmetric a-stable process.
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Questions addressed in this work

» Does the boundary trace process behave like a symmetric
stable process for other domains and diffusions?

» For example, what if we replace the reflected Brownian motion
with a diffusion generated by uniformly elliptic operator?

» What if we consider reflected Brownian motion on
non-smooth domains like Lipschitz domains (first orthant) or
uniform domain (snowflake domain)?

» What if we consider the trace of the Brownian motion on the
Sierpinski carpet on its outer square boundary?
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Trace of reflected Brownian motion on smooth domains

» (Osborn ‘60, Douglas ‘31) If U is a smooth domain in R” with
Green function gy(-,-) and u is harmonic in U with prescribed
boundary value f : QU — R, then the Dirichlet energy of u
can be expressed in terms of f as

28 gu(§,m)
/ \VU| x)dx = /8U/6U WC/U(@ do(n),

where ¢ is the surface measure on 9U and 7, i, are inward
pointing unit normal vectors at £, € 0U.

» The proof involves integration by parts (Gauss-Green formula).

» How to handle non-smooth domains like the snowflake
domain?

» Doob ‘62 proved a remarkable formula for the Dirichlet energy
for domains that are not necessarily smooth. We call it the
Doob-Naim formula.
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Naim kernel

» Let U denote a transient domain and let dy U denote its
Martin boundary. Let xp € U be a base point.

» The Naim kernel is defined as

gU(X7 y)
gu(x0, x)gu(x0, y)

eijo(xv)/): , forx,ye U\{XO}

» Naim ‘57 showed that the above function can be extended
continuously to the Martin boundary 9y, U with respect to
Cartan’s fine topology on U U dyU as

OY (e ) = lim lim — EYY) e e oL £,
x—€y—n gu(xo, x)gu(x0, )

The above limits are with respect to Cartan’s fine topology.

8/25



Doob-Naim formula

Theorem (Doob ‘62)

Let wl(-) denote the harmonic measure for the Brownian motion
on the Martin boundary Oy U, where xy € U is the starting point.
The Dirichlet energy of a harmonic function on u: U — R with a
prescribed boundary value f : OyyU — R is given by

2 dx = — 29V wY wY ().
/U Vul? d /8 y /8 ) F) O €, oty () ot ()

In other words, the jump kernel of the boundary trace of reflected
Brownian motion with respect to the harmonic measure is the
Naim kernel.

Doob'’s proof relies on a version of integration by parts that uses
the notion of fine normal derivatives introduced by Naim '57.
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Uniform domains and capacity density condition
» A domain U is said to satisfy the capacity density condition if
there exists (7, A; such that for all
¢ €0U,0 < rdiam(U)/As,

Cap(B(€7 r)? 8(57 2r)c) <G Cap(B(f, f) \ U, B(E? 2r)c)

» (Martio, Sarvas '79) A connected, non-empty, proper open set
U € X is said to be a uniform domain if there exists A > 1
such that for every pair of points x,y € U, there exists a
curve v in U from x to y such that its diameter
diam(y) < Ad(x,y), and

dist (z, US) > A"  min (d(x, z),d(y,z)) forall z € .
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Why study uniform domains?

» There is a one-to-one correspondence between a class of
uniform domains and Gromov-hyperbolic spaces (Bonk,
Heinonen, Koskela ‘01)

» (Rajala '21) Uniform domains are abundant in the sense that
every bounded domain can be approximated by a uniform
domain.

» Given a complete, doubling metric space (X, d) that is
bi-Lipschitz equivalent to a length space, a bounded domain
and € > 0, there exist uniform domains €, and €Q; such that

QcCcQCQ, Q[ () C[QYe.

» Uniform domains can have fractal boundaries and are far from
smooth in general.
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Our version of Doob-Naim formula

Theorem 1 (Kajino, M. ‘24+4): Let (X, d, m) be a metric measure
space and let (£, F) denote a Dirichlet form on L2(m)
corresponding to a diffusion process on X that satisfies
sub-Gaussian heat kernel estimates. Let U be a uniform domain
satisfying the capacity density condition and xg € U. Then

(a) The Naim kernel has a continuous extension to the
topological boundary as a (jointly) continuous function on

((UN\ {x0}) x (U\ {x0})) \ (U\ {x0})diaeg-

(b) The Dirichlet energy of a harmonic function in U (with respect
to (&€, F)) with prescribed boundary value f : 90U — R is

|| (0 — ) @46 n) dti(€) dss (),
ou Jou

where w)% is the harmonic measure on QU for the diffusion
starting at xp and stopped upon exiting U.
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Remarks on the Doob-Naim formula

» Qur proof relies on boundary Harnack principle which was not
available to Doob in 1962 as the first versions of BHP were
only developed in the late seventies.

> We use the boundary Harnack principle established by
A. Chen '24+. following the work of Aikawa ‘01.

» The degenerate diffusion of Molchanov and Ostrovskii satisfies
the condition of our theorem due to earlier results of Fabes,
Kenig, Serapioni ‘82 and results of Grigor'yan ‘91,
Saloff-Coste '92. Therefore the result of Caffarelli-Silvestre
follows from our version of the Doob-Naim formula.
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Further remarks on the Doob-Naim formula

» Doob's approach only is available for the Brownian motion
but can handle more general domains.

» Naim's formula for fine normal derivative is not available for
uniformly elliptic operators in R”.

» The Doob-Naim formula is new for elliptic operators on R”
given by Lf := div (A(-)Vf), where A is a measurable
n x n-positive definite matrix valued whose eigenvalues are
uniformly bounded from above and below.

» There is a diffusion generated by uniformly elliptic operator on
two dimensional upper half-space with singular harmonic
measure (with respect to the surface measure) due to
Caffarelli, Fabes, Kenig ‘81 based on a quasi-conformal
mapping of Ahlfors-Beurling ‘56.
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Estimates on harmonic measure

Theorem 2 (Kajino, M. ‘244) Under the assumptions of Theorem
1, there exist C, A € (0, 00) such that for any
xp € U,§ €U, r< d(Xo, )/A

18u(x0,&r) ngr) U , gu(xo0,&r)
C @) SR BN =

where &,,£) € U are chosen so that

dist (&, U) = dist (&, U) < d(&r,€) < d(&,€) < d(&, &) = r.
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Boundary local time

For the Molchanov-Ostrowski diffusion Z; = (X¢, Y¢), the local
time L; of Y} at zero serves as a ‘boundary local time’ with

R” x {0} = OH" = {z e H""! . P,[L; > 0] =1 for all t > 0}.

L; is a positive continuous additive functional associated with the

Markov process Z; supported on JH" 1,

A positive continuous additive functional (PCAF) associated

At 1 Q2 — [0,00), t > 0 with a Markov process (Q, Ft, Zt, 0+, P;)

where F; is the associated filtration, 8; : Q — Q is the time-shift

operator such that

(a) (positive and continuous) t — A¢(w) is non-negative,
continuous and Ag(w) = 0 P,-almost surely for all z.

(b) (adapted) A(-) is Fr-measurable.

(c) (additive property) Aiys(w) = Ar(w) + As(w o ;) P-almost
surely for all z.
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Boundary local time of a reflected diffusion

Let X; be a diffusion on U symmetric with respect to the measure
m and let (A;) be a positive continuous additive function.

Theorem (Revuz ‘70): There exists a unique measure y on U such
that for all non-negative measurable function h, f : U — [0, 00), we

have
Eh.m{/ot X)dA] // ) 1(dy) ds,

where Psh(y) = E,[h(Xs)] is the corresponding Markov semigroup.
Conversely, given any smooth measure 11 on U there exists a
unique PCAF that satisfies the above property.

Examples: Let A; be the local time at x € R for Brownian motion
on R, then ,u = Ox.

If Ay = fo s)ds, where f >0, then = f-m.
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Boundary measure on bounded domains

By the Revuz correspondence, the boundary local time can be
defined by choosing a suitable measure  supported on the
boundary OU.

The harmonic measure w)% is a natural choice for .

For bounded domains, we choose p = w)%, where xg € U is chosen
so that dist (xp, U¢) < diam(U).

This choice defines the measure up to a bounded perturbation,
since if xp, x) € U satisfy the above conditions
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Boundary measure on unbounded domains

For unbounded domains, there is a ‘canonical’ variant of harmonic
measure due to Kenig and Toro ‘99 for non-tangentially accessible
domains in R".

For each xp € U, there exists a unique measure uf{o on AU such
that

Y) = lim ;wu-
p() = Jim s ()

For xp, x1 € U, there exists ¢y, x, € (0,00) such that

130 () = S0 big(0):

We choose the boundary measure pu = ,u% for some xg € U in the
case of unbounded domains.

Theorem 2 implies that p is doubling (for both bounded and
unbounded domains).

Example: For the Molchanov-Ostrovskii diffusion p is (a positive
multiple of) the Lebesgue measure on OH"*! = R".
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The boundary trace process

Theorem 3 (Kajino, M. ‘24+): Let U be a domain as in Theorem
1 and let (X;)¢>0 be reflected diffusion on U.

Let A; denote the positive continuous additive functional
corresponding to the boundary measure ;. Then A; has support
OU; that is

OU = {x € U:Py[A; > 0] =1 for all t > 0}.

Then )v(t = X;,, where 7 is the right continuous inverse of A; is a
u-symmetric Markov process on 9U whose Dirichlet form on
L2(0U, 1) is given by the Doob-Naim formula.

The jump process X; on QU satisfies stable-like heat kernel bounds.
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Properties of a-stable process

Let us express properties of the a-stable process in terms of the
Lebesgue measure m, Euclidean distance d(-,-) and the space-time
scaling function ¢(r) = r.

The jump kernel and exit time bounds are

1
TN = B dey ot )y el =00

and the heat kernel bound is

(x.y) = 1 N t
PRSI = m(Bx, o 1(1))) " m(B(x, d(x,y)))e(d(x,y))’

forall x,y e R" t,r > 0.
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Space-time scaling of the boundary trace process

O, r) = {gU(§r7XO), for all £ € 0U,0 < r < diam(U)/A < o0,

h? (&), forall € € OU, r >0, if diam(U) = oo,

where &, € U satisfies d(&,,€) < dist (&, U%) < r and hQ(-) is the
unique positive harmonic function on U with zero boundary
condition with normalization hY (xo) = 1.

Examples:

For the Molchanov-Ostrovskii diffusion, the positive harmonic
function is h(x,y) = y® for x e R",y € [0, 00).

For the reflected Brownian motion on the first orthant

U = [0,00)", the harmonic function is

n

h(x) =TT h&) =T +n)
i=1

i=1

where x = (x1,...,xn) € U, & = (&1,...,&,) € OU.
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Estimates for the boundary trace process

The jump kernel and exit time bounds are

1
Hem = B dE e de ) elmenl = o).

and the heat kernel bound is

1 t
Pt(fﬂ?) - /L(B(& ¢71(£7 t))) A M(B(f, d(f,n)))q)(f, d(ﬁ, 77)) '

for all x,y € U,0 < r < C1diam(U), where ®~1(&, t) is the
inverse of r — ®(&, r) evaluated at t.
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Ingredients in the proof of Theorem 3

>

The jump kernel estimates follow from the Doob-Naim
formula (Theorem 1) and estimates on harmonic measure
(Theorem 2).

The reflected diffusion on U inherits sub-Gaussian heat kernel
estimates from the ambient space (M. ‘24).

This implies green function bounds on the boundary trace
process which in turn implies exit time bounds for the
boundary trace process.

General conditions on stable-like heat kernel bounds due to
Chen-Kumagai-Wang ‘21 and Grigor'yan-Hu-Hu ‘23 allows us
to deduce stable-like heat kernel bounds from jump kernel and
exit time estimates.

Our approach uses heat kernel estimates for the reflected
diffusion to obtain heat kernel estimates for the corresponding
boundary trace process (similar to Caffarelli-Silvestre).
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