Heat kernel estimates for boundary trace of reflected diffusions

Mathav Murugan

The University of British Columbia

Stochastics and Geometry, BIRS, September 2024.

Joint work with Naotaka Kajino (Kyoto University).

Brownian motion, Bessel and symmetric Stable processes.

- ▶ Let X_t denote the Brownian motion on \mathbb{R}^n .
- For $\alpha \in (0,2)$, S_t denote the symmetric α -stable process. That is, (S_t) has independent stationary increments with characteristic function $\mathbb{E}[\exp(i\xi \cdot S_t)] = \exp(-t \|\xi\|^{\alpha})$.
- Let Y_t denote the (2α) -dimensional Bessel process on $[0, \infty)$ generated by $\frac{d}{dv^2} + \frac{1-\alpha}{v} \frac{d}{dv}$ independent of X_t .
- Let L_t denote the local time at zero of the process Y_t and let τ_t denote the right continuous inverse of L_t defined as

$$\tau_t = \inf\{s > 0 : L_s > t\}.$$

► Theorem (Molchanov, Ostrovskii '69, Caffarelli, Silvestre '07)

$$(X_{\tau_t}, Y_{\tau_t}) \stackrel{(law)}{=} (S_t, 0).$$

▶ The case $\alpha = 1$ was shown earlier by Spitzer '58.

Analytic significance due to Caffarelli-Silvestre

▶ The process $Z_t = (X_t, Y_t)$ is a degenerate diffusion on the upper half space $\mathbb{H}^{n+1} = \mathbb{R}^n \times [0, \infty)$ with generator

$$L_{\alpha} = \Delta_{x} + \partial_{yy} + \frac{1 - \alpha}{y} \partial_{y}.$$

Key observation due to Caffarelli and Silvestre: properties of the non-local fractional Laplace operator $-(-\Delta)^{\alpha/2}$ in \mathbb{R}^n can be deduced from corresponding properties of the local operator L_{α} on \mathbb{H}^{n+1} .

Caffarelli-Silvestre version

► The diffusion $Z_t = (X_t, \frac{Y_t}{Y_t})$ on \mathbb{H}^{n+1} corresponds to the Dirichlet form $L^2(\mathbb{H}^{n+1}, y^{1-\alpha} \, dy \, dx)$ given by

$$\mathcal{E}(u,u) = \int_{\mathbb{R}^n} \int_{(0,\infty)} |\nabla u(x,y)|^2 y^{1-\alpha} dy dx.$$

▶ The Dirichlet form corresponding to the boundary trace process of the diffusion Z_t on $\partial \mathbb{H}^{n+1} \equiv \mathbb{R}^n$ is given by

$$\check{\mathcal{E}}(f,f) = \int_{\mathbb{R}^n} \int_{(0,\infty)} |\nabla u(x,y)|^2 y^{1-\alpha} dy dx$$

where u solves the Dirichlet problem (harmonic for \mathcal{E})

$$L_{\alpha}u\equiv 0$$
, on $\mathbb{R}^n\times (0,\infty)$, with boundary value $u(x,0)=f(x)$.

Caffarelli-Silvestre version

Caffarelli-Silvestre show that

$$\int_{\mathbb{R}^n} \int_{(0,\infty)} |\nabla u(x,y)|^2 y^{1-\alpha} dy dx = \int_{\mathbb{R}^n} [(-\Delta)^{\alpha/2} f](x) f(x) dx$$
$$= c_{n,\alpha} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(f(x) - f(y))^2}{|x - y|^{n+\alpha}} dy dx,$$

where u solves the Dirichlet problem (harmonic function with prescribed boundary value)

$$L_{\alpha}u\equiv 0$$
, on $\mathbb{R}^n\times (0,\infty)$, with boundary value $u(x,0)=f(x)$, $\mathcal{F}\left[(-\Delta)^{\alpha/2}f\right](\xi)=|\xi|^{\alpha}\mathcal{F}(f)$ denotes the fractional

Laplacian, and $\mathcal{F}[\cdot]$ denotes the Fourier transform.

▶ This is the Dirichlet form of the symmetric α -stable process.

Questions addressed in this work

- ▶ Does the boundary trace process behave like a symmetric stable process for other domains and diffusions?
- ► For example, what if we replace the reflected Brownian motion with a diffusion generated by uniformly elliptic operator?
- ▶ What if we consider reflected Brownian motion on non-smooth domains like Lipschitz domains (first orthant) or uniform domain (snowflake domain)?
- ► What if we consider the trace of the Brownian motion on the Sierpiński carpet on its outer square boundary?

Trace of reflected Brownian motion on smooth domains

Osborn '60, Douglas '31) If U is a smooth domain in \mathbb{R}^n with Green function $g_U(\cdot,\cdot)$ and u is harmonic in U with prescribed boundary value $f:\partial U\to\mathbb{R}$, then the Dirichlet energy of u can be expressed in terms of f as

$$\int_{U} |\nabla u|^{2}(x) dx = \frac{1}{2} \int_{\partial U} \int_{\partial U} (f(\xi) - f(\eta))^{2} \frac{\partial^{2} g_{U}(\xi, \eta)}{\partial \vec{n}_{\xi} \partial \vec{n}_{\eta}} d\sigma(\xi) d\sigma(\eta),$$

where σ is the surface measure on ∂U and $\vec{n}_{\xi}, \vec{n}_{\eta}$ are inward pointing unit normal vectors at $\xi, \eta \in \partial U$.

- The proof involves integration by parts (Gauss-Green formula).
- ► How to handle non-smooth domains like the snowflake domain?
- Doob '62 proved a remarkable formula for the Dirichlet energy for domains that are not necessarily smooth. We call it the Doob-Naïm formula.

Naïm kernel

- ▶ Let U denote a transient domain and let $\partial_M U$ denote its Martin boundary. Let $x_0 \in U$ be a base point.
- ► The Naïm kernel is defined as

$$\Theta_{x_0}^U(x,y) = \frac{g_U(x,y)}{g_U(x_0,x)g_U(x_0,y)}, \quad \text{for } x,y \in U \setminus \{x_0\}.$$

Naïm '57 showed that the above function can be extended continuously to the Martin boundary $\partial_M U$ with respect to Cartan's fine topology on $U \cup \partial_M U$ as

$$\Theta_{x_0}^U(\xi,\eta) = \lim_{x \to \xi} \lim_{y \to \eta} \frac{g_U(x,y)}{g_U(x_0,x)g_U(x_0,y)}, \quad \text{for } \xi, \eta \in \partial_M U, \xi \neq \eta,$$

The above limits are with respect to Cartan's fine topology.

Doob-Naim formula

Theorem (Doob '62)

Let $\omega_{x_0}^U(\cdot)$ denote the harmonic measure for the Brownian motion on the Martin boundary $\partial_M U$, where $x_0 \in U$ is the starting point. The Dirichlet energy of a harmonic function on $u: U \to \mathbb{R}$ with a prescribed boundary value $f: \partial_M U \to \mathbb{R}$ is given by

$$\int_{U} |\nabla u|^{2} dx = \int_{\partial_{M} U} \int_{\partial_{M} U} (f(\xi) - f(\eta))^{2} \Theta_{x_{0}}^{U}(\xi, \eta) d\omega_{x_{0}}^{U}(\xi) d\omega_{x_{0}}^{U}(\eta).$$

In other words, the jump kernel of the boundary trace of reflected Brownian motion with respect to the harmonic measure is the Naïm kernel.

Doob's proof relies on a version of integration by parts that uses the notion of fine normal derivatives introduced by Naïm '57.

Uniform domains and capacity density condition

A domain U is said to satisfy the capacity density condition if there exists C_1, A_1 such that for all $\xi \in \partial U, 0 < r \operatorname{diam}(U)/A_1$,

$$\operatorname{Cap}(B(\xi,r),B(\xi,2r)^c) \leq C_1 \operatorname{Cap}(B(\xi,r) \setminus U,B(\xi,2r)^c)$$

• (Martio, Sarvas '79) A connected, non-empty, proper open set $U \subsetneq X$ is said to be a uniform domain if there exists A > 1 such that for every pair of points $x, y \in U$, there exists a curve γ in U from x to y such that its diameter $\operatorname{diam}(\gamma) \leq Ad(x, y)$, and

$$\operatorname{dist}(z,U^c) \geq A^{-1} \min(d(x,z),d(y,z))$$
 for all $z \in \gamma$.

Why study uniform domains?

- ► There is a one-to-one correspondence between a class of uniform domains and Gromov-hyperbolic spaces (Bonk, Heinonen, Koskela '01)
- (Rajala '21) Uniform domains are abundant in the sense that every bounded domain can be approximated by a uniform domain.
- ▶ Given a complete, doubling metric space (X,d) that is bi-Lipschitz equivalent to a length space, a bounded domain Ω and $\epsilon > 0$, there exist uniform domains Ω_o and Ω_i such that

$$\Omega_i \subset \Omega \subset \Omega_0, \quad \Omega_o \subset [\Omega]_{\epsilon}, \quad (\Omega_i)^c \subset [\Omega^c]_{\epsilon}.$$

Uniform domains can have fractal boundaries and are far from smooth in general.

Our version of Doob-Naïm formula

Theorem 1 (Kajino, M. '24+): Let (X,d,m) be a metric measure space and let $(\mathcal{E},\mathcal{F})$ denote a Dirichlet form on $L^2(m)$ corresponding to a diffusion process on X that satisfies sub-Gaussian heat kernel estimates. Let U be a uniform domain satisfying the capacity density condition and $x_0 \in U$. Then

- (a) The Naı̈m kernel has a continuous extension to the topological boundary as a (jointly) continuous function on $\left((\overline{U}\setminus\{x_0\})\times(\overline{U}\setminus\{x_0\})\right)\setminus(\overline{U}\setminus\{x_0\})_{\text{diag}}.$
- (b) The Dirichlet energy of a harmonic function in U (with respect to $(\mathcal{E}, \mathcal{F})$) with prescribed boundary value $f : \partial U \to \mathbb{R}$ is

$$\int_{\partial U} \int_{\partial U} (f(\xi) - f(\eta))^2 \Theta_{x_0}^U(\xi, \eta) d\omega_{x_0}^U(\xi) d\omega_{x_0}^U(\eta),$$

where $\omega_{x_0}^U$ is the harmonic measure on ∂U for the diffusion starting at x_0 and stopped upon exiting U.

Remarks on the Doob-Naim formula

- Our proof relies on boundary Harnack principle which was not available to Doob in 1962 as the first versions of BHP were only developed in the late seventies.
- ▶ We use the boundary Harnack principle established by A. Chen '24+. following the work of Aikawa '01.
- ► The degenerate diffusion of Molchanov and Ostrovskii satisfies the condition of our theorem due to earlier results of Fabes, Kenig, Serapioni '82 and results of Grigor'yan '91, Saloff-Coste '92. Therefore the result of Caffarelli-Silvestre follows from our version of the Doob-Naïm formula.

Further remarks on the Doob-Naim formula

- Doob's approach only is available for the Brownian motion but can handle more general domains.
- Naïm's formula for fine normal derivative is not available for uniformly elliptic operators in \mathbb{R}^n .
- ▶ The Doob-Naïm formula is new for elliptic operators on \mathbb{R}^n given by $Lf := \operatorname{div} (A(\cdot)\nabla f)$, where A is a measurable $n \times n$ -positive definite matrix valued whose eigenvalues are uniformly bounded from above and below.
- ► There is a diffusion generated by uniformly elliptic operator on two dimensional upper half-space with singular harmonic measure (with respect to the surface measure) due to Caffarelli, Fabes, Kenig '81 based on a quasi-conformal mapping of Ahlfors-Beurling '56.

Estimates on harmonic measure

Theorem 2 (Kajino, M. '24+) Under the assumptions of Theorem 1, there exist $C, A \in (0, \infty)$ such that for any $x_0 \in U, \xi \in \partial U, r < d(x_0, \xi)/A$

$$0 \in U, \xi \in \partial U, r < d(x_0, \xi)/A$$

$$C^{-1}\frac{g_U(x_0,\xi_r)}{g_U(\xi_r',\xi_r)} \leq \omega_{x_0}^U(B(\xi,r)) \leq C\frac{g_U(x_0,\xi_r)}{g_U(\xi_r',\xi_r)}$$

where $\xi_r, \xi_r' \in U$ are chosen so that

$$\operatorname{dist}(\xi_r,U^c) \asymp \operatorname{dist}(\xi_r',U^c) \asymp d(\xi_r,\xi) \asymp d(\xi_r',\xi) \asymp d(\xi_r,\xi_r') \asymp r.$$

Boundary local time

For the Molchanov-Ostrowski diffusion $Z_t = (X_t, Y_t)$, the local time L_t of Y_t at zero serves as a 'boundary local time' with

$$\mathbb{R}^n \times \{0\} = \partial \mathbb{H}^{n+1} = \{z \in \mathbb{H}^{n+1} : \mathbb{P}_z[L_t > 0] = 1 \text{ for all } t > 0\}.$$

 L_t is a positive continuous additive functional associated with the Markov process Z_t supported on $\partial \mathbb{H}^{n+1}$.

A positive continuous additive functional (PCAF) associated $A_t:\Omega \to [0,\infty), t\geq 0$ with a Markov process $(\Omega,\mathcal{F}_t,Z_t,\theta_t,\mathbb{P}_z)$ where \mathcal{F}_t is the associated filtration, $\theta_t:\Omega \to \Omega$ is the time-shift operator such that

- (a) (positive and continuous) $t \mapsto A_t(\omega)$ is non-negative, continuous and $A_0(\omega) = 0$ \mathbb{P}_z -almost surely for all z.
- (b) (adapted) $A_t(\cdot)$ is \mathcal{F}_t -measurable.
- (c) (additive property) $A_{t+s}(\omega) = A_t(\omega) + A_s(\omega \circ \theta_t) \mathbb{P}_z$ -almost surely for all z.

Boundary local time of a reflected diffusion

Let X_t be a diffusion on \overline{U} symmetric with respect to the measure m and let (A_t) be a positive continuous additive function.

Theorem (Revuz '70): There exists a unique measure μ on \overline{U} such that for all non-negative measurable function $h, f: \overline{U} \to [0, \infty)$, we have

$$\mathbb{E}_{h\cdot m}\left[\int_0^t f(X_s)\,dA_s\right] = \int_0^t \int_{\overline{U}} f(y)P_sh(y)\,\mu(dy)\,ds,$$

where $P_sh(y)=\mathbb{E}_y[h(X_s)]$ is the corresponding Markov semigroup. Conversely, given any smooth measure μ on \overline{U} there exists a unique PCAF that satisfies the above property.

Examples: Let A_t be the local time at $x \in \mathbb{R}$ for Brownian motion on \mathbb{R} , then $\mu = \delta_x$.

If $A_t = \int_0^t f(X_s) ds$, where $f \ge 0$, then $\mu = f \cdot m$.

Boundary measure on bounded domains

By the Revuz correspondence, the boundary local time can be defined by choosing a suitable measure μ supported on the boundary ∂U .

The harmonic measure $\omega_{x_0}^U$ is a natural choice for μ . For bounded domains, we choose $\mu = \omega_{x_0}^U$, where $x_0 \in U$ is chosen

so that $\operatorname{dist}\left(x_{0},U^{c}\right)\asymp\operatorname{diam}(U).$

This choice defines the measure up to a bounded perturbation, since if $x_0, x_0' \in U$ satisfy the above conditions

$$rac{d\omega_{ extbf{x}_0'}^U}{d\omega_{ extbf{x}_0}^U}symp 1$$
 on ∂U .

Boundary measure on unbounded domains

For unbounded domains, there is a 'canonical' variant of harmonic measure due to Kenig and Toro '99 for non-tangentially accessible domains in \mathbb{R}^n .

For each $x_0 \in U$, there exists a unique measure $\mu_{x_0}^U$ on ∂U such that

$$\mu_{x_0}^U(\cdot) = \lim_{y \to \infty} \frac{1}{g(x_0, y)} \omega_y^U(\cdot)$$

For $x_0, x_1 \in U$, there exists $c_{x_0,x_1} \in (0,\infty)$ such that $\mu^U_{x_1}(\cdot) = c_{x_0,x_1}\mu^U_{x_0}(\cdot)$.

We choose the boundary measure $\mu=\mu_{x_0}^U$ for some $x_0\in U$ in the case of unbounded domains.

Theorem 2 implies that μ is doubling (for both bounded and unbounded domains).

Example: For the Molchanov-Ostrovskii diffusion μ is (a positive multiple of) the Lebesgue measure on $\partial \mathbb{H}^{n+1} = \mathbb{R}^n$.

The boundary trace process

Theorem 3 (Kajino, M. '24+): Let U be a domain as in Theorem 1 and let $(X_t)_{t\geq 0}$ be reflected diffusion on \overline{U} . Let A_t denote the positive continuous additive functional corresponding to the boundary measure μ . Then A_t has support ∂U : that is

$$\partial U = \{x \in \overline{U} : \mathbb{P}_x[A_t > 0] = 1 \text{ for all } t > 0\}.$$

Then $\check{X}_t = X_{\tau_t}$, where τ_t is the right continuous inverse of A_t is a μ -symmetric Markov process on ∂U whose Dirichlet form on $L^2(\partial U,\mu)$ is given by the Doob-Naïm formula. The jump process \check{X}_t on ∂U satisfies stable-like heat kernel bounds.

Properties of α -stable process

Let us express properties of the α -stable process in terms of the Lebesgue measure m, Euclidean distance $d(\cdot, \cdot)$ and the space-time scaling function $\phi(r) = r^{\alpha}$.

The jump kernel and exit time bounds are

$$J(x,y) \asymp \frac{1}{m(B(x,d(x,y)))\phi(d(x,y))}, \quad \mathbb{E}_{x}[\tau_{B(x,r)}] \asymp \phi(r),$$

and the heat kernel bound is

$$\rho_t(x,y) \asymp \frac{1}{m(B(x,\phi^{-1}(t)))} \wedge \frac{t}{m(B(x,d(x,y)))\phi(d(x,y))}.$$

for all $x, y \in \mathbb{R}^n$, t, r > 0.

Space-time scaling of the boundary trace process

$$\Phi(\xi,r) \asymp \begin{cases} g_U(\xi_r,x_0), & \text{for all } \xi \in \partial U, 0 < r < \operatorname{diam}(U)/A < \infty, \\ h_{x_0}^U(\xi_r), & \text{for all } \xi \in \partial U, r > 0, \text{ if } \operatorname{diam}(U) = \infty, \end{cases}$$

where $\xi_r \in U$ satisfies $d(\xi_r, \xi) \asymp \operatorname{dist}(\xi_r, U^c) \asymp r$ and $h_{x_0}^U(\cdot)$ is the unique positive harmonic function on U with zero boundary condition with normalization $h_{x_0}^U(x_0) = 1$.

Examples:

For the Molchanov-Ostrovskii diffusion, the positive harmonic function is $h(x,y) = y^{\alpha}$ for $x \in \mathbb{R}^n, y \in [0,\infty)$.

For the reflected Brownian motion on the first orthant $\overline{U} = [0, \infty)^n$, the harmonic function is

$$h(x) = \prod_{i=1}^{n} x_i, \quad h(\xi_r) = \prod_{i=1}^{n} (\xi_i + r),$$

where
$$x = (x_1, \dots, x_n) \in \overline{U}, \xi = (\xi_1, \dots, \xi_n) \in \partial U$$
.

Estimates for the boundary trace process

The jump kernel and exit time bounds are

$$J(\xi,\eta) \asymp \frac{1}{\mu(B(\xi,d(\xi,\eta)))\Phi(\xi,d(\xi,\eta))}, \quad \mathbb{E}_{\xi}[\tau_{B(\xi,r)}] \asymp \Phi(\xi,r),$$

and the heat kernel bound is

$$p_t(\xi,\eta) \asymp \frac{1}{\mu(B(\xi,\Phi^{-1}(\xi,t)))} \wedge \frac{t}{\mu(B(\xi,d(\xi,\eta)))\Phi(\xi,d(\xi,\eta))}.$$

for all $x, y \in \overline{U}, 0 < r < C^{-1} \operatorname{diam}(U)$, where $\Phi^{-1}(\xi, t)$ is the inverse of $r \mapsto \Phi(\xi, r)$ evaluated at t.

Ingredients in the proof of Theorem 3

- ► The jump kernel estimates follow from the Doob-Naïm formula (Theorem 1) and estimates on harmonic measure (Theorem 2).
- ▶ The reflected diffusion on \overline{U} inherits sub-Gaussian heat kernel estimates from the ambient space (M. '24).
- This implies green function bounds on the boundary trace process which in turn implies exit time bounds for the boundary trace process.
- General conditions on stable-like heat kernel bounds due to Chen-Kumagai-Wang '21 and Grigor'yan-Hu-Hu '23 allows us to deduce stable-like heat kernel bounds from jump kernel and exit time estimates.
- Our approach uses heat kernel estimates for the reflected diffusion to obtain heat kernel estimates for the corresponding boundary trace process (similar to Caffarelli-Silvestre).

Thank you for your attention

N. Kajino, M. Murugan. Heat kernel estimates for boundary trace of reflected diffusions on uniform domains. arXiv:2312.08546.

M. Murugan, Heat kernel for reflected diffusion and extension property on uniform domains, *Probab. Theory Related Fields* (2024).